路灯车怎么样抗颠覆保持稳定??路灯车出租,顺德路灯车出租,顺德出租路灯车,路灯车是近年来国内外新兴的一种用于建筑施工辅助、高空设备安装、检修等工作的可移动性高空作业产品。目前国外路灯车生产厂家较多,包括知名的美国吉尼公司、JLG公司、特雷克斯公司等,且产品技术成熟,工作幅度大。但国内生产厂家较少,产品工作高度和范围均较小,主要原因是产品对整体稳定性要求较高,采用力矩法计算某型路灯车的整体抗倾覆稳定性,用 Matlab软件绘制稳定性系数曲线,得出了机械整体抗倾覆稳定的结论。组成某型路灯车总重约为3800 kg,上回转机构可绕底座旋转360°,整体三维模型见图1,包括支腿、回转支承及车体、伸缩臂、飞臂和吊篮等部分。其工作范围如图2所示,最大工作高度为23 m,单人负载水平工作半径为12 m,双人负载水平工作半径为9 m,图中所示曲线为极限工作范围。1.吊篮2.飞臂3.伸缩臂4.支腿5.回转支承及车体图1路灯车整机模型工况1:伸缩臂全伸,伸缩臂与飞臂中心线重合,伸缩臂与水平夹角α在单人负载、双人负载时为60°~86°。图2路灯车工作范围图3工况1示意图工况2:伸缩臂与水平夹角保持不变,即双人负载α为66°,单人负载α为60°,飞臂与水平夹角β在0~α之间变化,如图4所示。图4工况2示意图工况3:伸缩臂与水平夹角α变化范围为双人负载为0~66°,单人负载为0~60°,飞臂保持水平,如图5所示。对3种工况进行力学分析,从而确定路灯车的抗倾覆性能。路灯车受力示意图,针对其结构特点,借鉴已有起重机整体抗倾覆稳定性的计算方法,采用力矩法分别求出稳定力矩和倾覆力矩。吊篮、负载及飞臂重量为倾覆载荷,伸缩臂自重分为2部分,一部分自重认为作用在伸缩臂根部 Gb,可等效为稳定力矩;另一部分自重 Gh作用在伸缩臂端部,等效为倾覆力矩。图6受力分析示意图据此列出路灯车整体抗倾覆稳定性的数学模型。稳定力矩 (1)式中: G1为伸缩臂斜支撑自重,N; L1为伸缩臂斜支撑重心与中心点距离,m; G2为车架、支腿及旋转座重量,N; G3为伸缩臂自重,N; L3为伸缩臂重心与中心点距离,m; r为伸缩臂根部与中心点距离,m; a为支腿支点与中心点距离,m;R为伸缩臂端部与中心点距离。
路灯车出租,顺德路灯车出租,顺德出租路灯车,伸缩臂长度,伸缩臂与水平线夹角; 飞臂自重,飞臂重心与中心点距离,吊篮及载荷重量,吊篮及载荷重量的重心与中心点距离,飞臂长度,飞臂与水平线夹角, W为作用在路灯车上的风力合力; m为伸缩臂根部距地面距离,回转速度,起升速度,起动时间。式(2)中第1、2、3项分别考虑了水平动载荷、风载荷、制动冲击载荷对稳定性的影响。当稳定力矩和倾覆力矩满足稳定性判定条件,即稳定性系数K= MS/MT>1时,可借鉴起重机设计规范判定路灯车的稳定性。抗倾覆稳定性模型求解利用 Matlab软件对工作范围曲线上稳定性系数 K进行分析计算,分别得出3种工况下,支腿位于纵向距离 l=2700 mm,横向距离B=5485mm布置方案且臂架回转面在纵向距离 l位置情况下的稳定性系数 K与伸缩臂、飞臂与水平线夹角α、β的关系曲线,得到以下结论:1)图8a、8b反映出工况1时,在双人负载和单人负载情况下,当α在60°~86°范围内变化时,稳定性系数 K随着α的增加而增加; 2)图8c、8d反映出工况2时,在双人负载和单人负载情况下,当β分别在0~66°和0~60°范围内变化时,稳定性系数 K随β的增加而增加;3)图8e、8f反映出工况3时,在双人负载和单人负载情况下,当α分别在0~66°和0~60°范围内变化时,稳定性系数 K随α的增加而减小。分析计算得出与工况对应的 K值见表1。可知此型号路灯车在极限工作状态抗倾覆稳定性系数 K大于1,由此可根据规范判定其达到整体抗倾覆稳定性。根据路灯车结构特点及工作范围,分析其3种典型作业工况,并借鉴起重机设计规范,采用力矩法进行了力学分析,建立了抗倾覆数学模型,并考虑了水平动载荷、风载荷、制动冲击载荷对稳定性的影响;利用 Matlab软件对数学模型进行求解,分别得到路灯车在3种工况下某一极限位置时稳定性系数 K的变化范围,可借鉴设计规范说明其整体稳定;通过绘制工作范围曲线图,得出抗倾覆稳定性系数 K与伸缩臂角度α、飞臂角度β的变化关系,为路灯车设计提供了参考依据。
路灯车出租,顺德路灯车出租,顺德出租路灯车,